Saturday, February 21, 2009

Renewable and Alternative Energy Sources Ranked_Review of solutions to global warming, air pollution, energy security_Information Overload Mastered

This post follows the previous one, "a short definition of Sustainable Development (SusDev.) with good reference links for more background reading but first please read on.

The Sustainability "Science and Engineering" theme with it's highly complex ramifications have undoubtedly lead to information overload, much confusion and therefore, in all probability, inadequate and ineffective responses to the many, inter-related challenges raised. (exponentially increasing resource waste?)

Here I wish to present, what I feel could become, one of the most important theoretical approaches to alleviate current misunderstandings in what is emerging as mankind's most important challenge(s), namely: climate-change: specifically energy - related solutions to global warming, air pollution mortality, and energy security. [It compliments and clarifies the earlier Pacala and Socolow Wedge Approach widely commented].

Mark Z. Jacobson of the Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA , in this "Review of solutions to global warming, air pollution, and energy security" is a substantial, much needed, contribution to alleviate this situation.

The study deserves equally wide echo, comment and debate to reap the sustainability benefits owed to future generations, through present and future co-operation, co-ordination, leadership to attain anticipatory action-investment(s).

Mark justifies his work as follows:
"Air pollution and global warming are two of the greatest threats to human and animal health and political stability. Energy insecurity and rising prices of conventional energy sources are also major threats to economic and political stability. Many alternatives to conventional energy sources have been proposed, but analyses of such options have been limited in breadth and depth. The purpose of this paper is to review several major proposed solutions to these problems with respect to multiple externalities of each option. With such information, policy makers can make better decisions about supporting various options. Otherwise, market forces alone will drive decisions that may result in little benefit to climate, air pollution, or energy–security problems."

His approach is one of weighting and ranking renewable and alternative energy sources and resources.

The published summary "Broader Context" can hardly be improved upon and is reproduce as is.
"His paper reviews and ranks major proposed energy-related solutions to global warming, air pollution mortality, and energy security while considering impacts of the solutions on water supply, land use, wildlife, resource availability, reliability, thermal pollution, water pollution, nuclear proliferation, and undernutrition. To place electricity and liquid fuel options on an equal footing, twelve combinations of energy sources and vehicle type were considered. The overall rankings of the combinations (from highest to lowest) were (1) wind-powered battery-electric vehicles (BEVs), (2) wind-powered hydrogen fuel cell vehicles, (3) concentrated-solar-powered-BEVs, (4) geothermal-powered-BEVs, (5) tidal-powered-BEVs, (6) solar-photovoltaic-powered-BEVs, (7) wave-powered-BEVs, (8) hydroelectric-powered-BEVs, (9-tie) nuclear-powered-BEVs, (9-tie) coal-with-carbon-capture-powered-BEVs, (11) corn-E85 vehicles, and (12) cellulosic-E85 vehicles. The relative ranking of each electricity option for powering vehicles also applies to the electricity source providing general electricity. Because sufficient clean natural resources (e.g., wind, sunlight, hot water, ocean energy, etc.) exist to power the world for the foreseeable future, the results suggest that the diversion to less-efficient (nuclear, coal with carbon capture) or non-efficient (corn- and cellulosic E85) options represents an opportunity cost that will delay solutions to global warming and air pollution mortality. The sound implementation of the recommended options requires identifying good locations of energy resources, updating the transmission system, and mass-producing the clean energy and vehicle technologies, thus cooperation at multiple levels of government and industry.
NB. "[Costs are not examined since policy decisions should be based on the ability of a technology to address a problem rather than costs (e.g., the U.S. Clean Air Act Amendments of 1970 prohibit the use of cost as a basis for determining regulations required to meet air pollution standards) and because costs of new technologies will change over time, particularly as they are used on a large scale. Similarly, costs of existing fossil fuels are generally increasing, making it difficult to estimate the competitiveness of new technologies in the short or long term. Thus, a major purpose of this paper is to provide quantitative information to policy makers about the most effective solutions to the problem discussed so that better decisions about providing incentives can be made." ] _so there is much work to be done (TBD) by stake holders, companies, specialists, professional involved. It is perhaps also an excellant place to start for the relative newcommer?

The resultant overview is thorough:
1. Overview introduction, 2. Description of technologies, 3. Available resources, 4. Effects on climate-relevant emissions, 5. Effects on air pollution emissions and mortality, 6. Land and ocean use, 7. Water supply, 8. Effects on wildlife and the environment, 9. Energy supply disruption, 10.Supply Intermittency and how to address it 11. Overall results, 12. Example large-scale application.
NB.
"Costs are not examined since policy decisions should be based on the ability of a technology to address a problem rather than costs (e.g., the U.S. Clean Air Act Amendments of 1970 prohibit the use of cost as a basis for determining regulations required to meet air pollution standards) and because costs of new technologies will change over time, particularly as they are used on a large scale.

Similarly, costs of existing fossil fuels are generally increasing, making it difficult to estimate the competitiveness of new technologies in the short or long term.

Thus, a major purpose of this paper is to provide quantitative information to policy makers about the most effective solutions to the problem discussed so that better decisions about providing incentives can be made."...

It is a highly useful contribution to information overload and a must read for all Materials Scientists, Chemists, Technologists and Engineers; Experts, Stakeholders, Gov-Admin, NGO's and Consultants of whatever calling. There remains much to do done (TBD) by all concerned - Discuss


Source and Acknowledgement:
Energy Environ. Sci., 2009, 2, 148-173, DOI: 10.1039/b809990c – Reproduced by permission of the Royal Society of Chemistry

sejarah ilmu dan teknik material


Ilmu material (bahan) sebenarnya sangat berperan penting dalam perkembangan peradaban kita selama ini. Transportasi, perumahan, pakaian, komunikasi, rekreasi, dan produksi makanan, bahkan setiap sudut dalam kehidupan sehari-hari kita, tidak pernah lepas dari pemanfaatan material beserta teknologinya. Material – material mengkonduksi atau menginsulasi panas dan listrik, menerima pembebanan tanpa mengalami kerusakan, menerima atau menolak gaya magnet, mentransmisikan atau memantulkan cahaya, dan lain sebagainya, dalam aplikasi – aplikasi yang spesifik dalam kehidupan kita saat ini. Material – material baru dengan karakteristiknya yang lebih spesifik terus dikembangkan dalam upaya untuk memenuhi kebutuhan hidup manusia modern yang semakin kompleks.


Sejarah menunjukkan bahwa perkembangan dan kemajuan masyarakat kita selama ini ditunjukkan dengan kemampuannya untuk menghasilkan dan memanipulasi material. Kenyataannya, perkembangan peradaban kita memang terbagi berdasarkan tingkat perkembangan teknologi material yang dikuasai oleh manusia dari zaman ke zaman. Kita kemudian mengenal beberapa istilah, seperti zaman batu dan zaman logam. Zaman logam, lebih spesifik lagi, terbagi ke dalam zaman perunggu dan zaman besi. Pada zaman batu manusia memiliki kemampuan mengolah material yang lebih terbatas, dimana hanya tergantung dari ketersedian material yang ada di permukaan bumi secara alami, misalnya : batu, lempung, kulit hewan, tulang dan lain sebagainya.


Peningkatan kemampuan manusia dalam menguasai teknik pengolahan material menjadikan manusia kemudian mampu memproduksi perlengkapan – perlengkapan berbasis material yang lebih baik. Manusia menemukan bahwa terdapat material – material dalam perut bumi yang apabila diolah akan punya sifat yang lebih baik dibandingkan material – material yang ada di permukaan. Melalui pemikiran ini, manusia kemudian mulai menguasai teknik pembuatan berbagai peralatan barbasis logam yang kemudian memunculkan era penggunaan logam. Pada era ini terdapat tujuh jenis logam yang diyakini telah dikembangkan pada peradaban awal manusia yaitu emas, perak, tembaga, besi, timah putih (tin), timah hitam (lead), dan Air raksa (mercury). Alasan mengapa tujuh logam ini dikenal oleh peradaban awal karena secara alami logam – logam tersebut terdapat dalam bentuk yang lebih “bebas” di alam atau terkandung secara dominan pada mineralnya sehingga secara sederhana mampu diolah.


Emas, diyakini sebagai logam yang paling pertama kali dikenal, banyak dimanfaatkan sebagai bahan perhiasan. Tembaga telah dikenal pada masa sekitar 4700 SM dan digunakan secara luas sebagai bahan persenjataan dan berbagai peralatan sehari – hari oleh bangsa Mesopotamia, Mesir, Yunani, Bolivia, dan Romawi, serta penduduk China dan India. Perak telah dikenal semenjak sekitar 4000 SM dan digunakan secara luas, bersama – sama dengan emas sebagai alat tukar perdagangan (uang koin) dunia. Timah hitam mulai digunakan sekitar tahun 3500 SM. Karena kemudahannya dibentuk, kekaisaran Romawi menggunakan material logam ini sebagai pelaratan makan, minum, pipa, dan akuaduk. Timah putih ditemukan sekitar tahun 1750 SM oleh bangsa Mesir dan seringkali dipadukan dengan tembaga untuk tujuan dekoratif dan untuk meingkatkan kekerasan dan kekuatan tembaga.


Bangsa Skandinavia menemukan cara yang sederhana untuk mengekstraksi besi dari bijih besi. Mereka mengetahui bahwa pada pembakaran bijih besi terbentuk endapan lelehan besi yang ditemukan pada dasar lubang pembakaran. Penemuan material besi inlah yang kemudian mengawali dimulainya era pengunaan material berbasis besi secara besar – besaran pada awal tahun Masehi. Dalam waktu singkat kemudian manusia memanfaatkan mineral yang kaya kandungan besi sebagai bahan pembuatan peralatan – peralatan berbasis besi. Manusia juga mengetahui cara meningkatkan kuatitas besi yang dihasilkan dengan meningkatkan temperatur pemanasan bijih besi melalui pemanfaatan angin buatan. Dari sini muncullah ilmu metallurgi ekstraksi konvensional, yang mendasari pemikiran lebih lanjut mengenai proses pemisahan unsur logam dari mineralnya. Proses pereduksian bijih besi ini diyakini ditemukan oleh peradaban Cina sekitar tahun 2000 SM.


Jenis logam yang unik dimana juga termasuk ke dalam kelompok logam – logam yang dikembangkan pada awal sejarah peradaban manusia adalah Air raksa (mercury) yang ditemukan sekitar tahun 1600 SM dimana kemudian disebut oleh manusia pada masa itu sebagai quicksilver. Hal tersebut dikarenakan Air raksa merupakan satu – satunya logam yang dalam keadaan kondisi ruang (atmosfer), selalu stabil dalam bentuk cair.


Dalam perkembangannya, semakin lama, keberadaan logam – logam dalam kuantitas yang besar semakin langka. Tembaga menjadi sulit ditemukan dalam kondisi bebas di alam. Bijih besi yang berkadar besi tinggi semakin jarang ditemukan. Hal ini mengakibatkan biaya pengadaan material semakin tinggi. Karena semakin terbatasnya ketersediaan material yang ada di alam, kemudian muncul pemikiran untuk memanfaatkan material secara lebih efektif dan efisien. Penggunaan bahan secara efektif dan efisien ini menuntut adanya penguasaan pengetahuan terhadap sifat – sifat material, kemungkinan penggunaan material – material alternatif, dan variasi proses perlakuan terhadap material yang dapat digunakan untuk mencapai karakteristik material yang dibutuhkan. Tuntutan yang tinggi terhadap kreatifitas manusia kemudian meningkatkan kemampuan manusia dalam pemilihan dan penggunaan bahan guna memproduksi produk – produk berbasis material dengan sifat – sifat yang sesuai kebutuhan serta dengan biaya yang lebih minimal baik dari sisi proses maupun pengadaan materialnya. Lebih jauh lagi, manusia kemudian mengetahui bahwa kemampuan material dapat ditingkatkan sesuai dengan yang diinginkan melalui serangakaian proses perlakuan panas, atau pemaduan dengan material lainnya.


Lahirnya revolusi industri berdampak pada peningkatan kebutuhan dan konsumsi material dimana juga meningkatkan pengembangan teknologi pengolahan material. Perkembangan pengetahuan dan teknologi material ini semakin meningkat secara drastis semenjak para ilmuwan mengetahui tentang adanya hubungan antara struktur, komposisi dan sifat fisis material. Pengetahuan tersebut baru diperoleh semenjak sekitar seratus tahun lalu, dimana kemudian memberikan kemampuan kepada manusia terhadap cara baru, dan tingkatan yang lebih tinggi dalam memanipulasi sifat material. Dari sini kemudian tercipta berbagai jenis teknologi manipulasi material, yang memberikan kesempatan pada perkembangan yang lebih jauh lagi dalam penggunaan material – material alternatif pada aplikasi teknik, yang termasuk di dalamnya logam, keramik, plastik, dan serat.


Perkembangan sejumlah teknologi yang membuat hidup kita semakin praktis dan nyaman akan selalu berhubungan dengan kemampuan mengakses pemanfaatan material tepat guna. Sebuah kemajuan dalam pemahaman terhadap tipe – tipe material seringkali merupakan suatu awalan atau pioner dalam terciptanya teknologi – teknologi baru. Sebagai contoh, dunia otomotif tidak akan mengalami perkembangan seperti sekarang ini tanpa adanya ketersediaan baja yang murah atau beberapa bahan pengganti alternatif lainnya. Industri penerbangan akan mengalami kesulitan berkembang tanpa adanya penemuan pemanfaatan material – material berbasis alumunium yang lebih ringan. Sedangkan pada era informasi seperti sekarang ini, peralatan komunikasi elektronik yang canggih tergantung pada komponen – komponen yang terbuat dari bahan semikonduktor. Hal inilah yang menjadikan penguasaan ilmu dan teknologi material merupakan hal yang sangat penting dalam upaya terus meningkatkan kualitas hidup manusia di masa depan.



Referensi

Callister Jr., William D. 2007. Material Science and Engineering : An Introduction (7th edition). New York : John Willey & Son, Inc

Neely, John E., et all. 2003. Practical Metallurgy and Materials of Industry. New Jersey : Prentice Hall

Ashby, Michael et all. 2007. Materials Engineering, Science, Processing and Design. Oxford : Butterworth – Heinemann

Friday, February 20, 2009

Definition of Sustainable Development Recalled for Memory_One Powerful Approach to bring Focus to the near universal nature of Materials Science...

Sustainable development is a pattern of resource use that aims to meet human needs while preserving the environment so that these needs can be met not only in the present, but in the indefinite future. The term was used by the Brundtland Commission which coined what has become the most often-quoted definition of sustainable development as development that "meets the needs of the present without compromising the ability of future generations to meet their own needs.

Environmental Sustainability Summarised:






Source:

Wikipedia. One point entry,but many references and links...

Tuesday, February 17, 2009

Mineral Extraction powered by Geothermal Energy- Ocean Thermal Energy Conversion

"OTEC" Ocean Thermal Energy Conversion, just a quickie for old colleagues
("May auld acquaintances be forgot and never brought tae mind! quote from Robert Burns).

Mineral Extraction: extracted quote from NREL

The Japanese found that developments in other technologies (especially materials sciences) were improving the viability of mineral extraction processes that employ ocean energy. "

"Not yet exploited to its full potential is the opportunity OTEC could provide to mine ocean water for its 57 elements dissolved in solution. In the past, most economic analyses showed that mining the ocean for trace elements dissolved in solution would be unprofitable because so much energy is required to pump the large volume of water needed and because it is so expensive to separate the minerals from seawater. However, because OTEC plants will already be pumping the water economically, the only problem to solve is the cost of the extraction process. The Japanese recently began investigating the concept of combining the extraction of uranium dissolved in seawater with wave-energy technology and found that..."

Link

Of course there are a host of OTEC applications can be used to generate electricity, desalinate water, support deep-water mariculture, and provide refrigeration and air-conditioning as well as aid in crop growth and mineral extraction.

These complementary products make OTEC systems attractive to industry and island communities even if the price of oil remains low.

NB Google supports Geothermal Energy Applications but I don't appear to have spotted partners and investors in OTEC - Ocean Thermal Energy Conversion...Yet. Could my AdSense providers be waiting to be certain there investment sites do not become submerged sub as in sub...marine.

Thursday, February 12, 2009

Thoughts About K4D: "RESEARCH FUNDING: European Science Not As Intense As Hoped"

ref
Thoughts About K4D: "RESEARCH FUNDING: European Science Not As Intense As Hoped"

"R&D intensity" (research spending as a percentage of gross domestic product) pretty much stuck at about 1.84%--a long way from the E.U.'s self-imposed goal of reaching an R&D intensity of 3% by 2010.

The Year 2008 in Materials from MIT's Tech Review

Just reviewed and up-dated my RSS feed, tarrying on MIT's Tech Rev. Fortunately I did not give-up in face of the such advanced topics and the complexities of the underlying materials science. Note in passing the incredible revival in these metallurgical and materials fields.

You may have noticed that perseverance, "courage" is of great assistance in serendipity-good luck.

On instinct I picked a couple of stories from the MIT Tech. Rev:
(you may wish to follow this lead and find your own hopefully inspired by my unfinalised RSS approach and remarks)

Story 1: Super-Resolution Imaging and a $10 Microscope
key words which caught my a attention "low cost (10$)" and "metamaterials"

Super-Resolution Imaging and a $10 Microscope Metamaterials are usually lauded for their potential to direct light around an object, completely hiding it. This year brought the first designs for acoustic metamaterials, which will shield objects from sound. But the earliest application of metamaterials, usually made up of metals carefully structured on the nano- or microscale to tailor their interactions with light, is likely to be in super-resolution imaging. Light microscopes with resolutions on the scale of biological molecules will help biologists understand not just what proteins are at work in diseased cells, but also how they interact with other molecules to cause disease. Nicholas Fang of the University of Illinois is using metamaterials made up of metals structured on the nanoscale to make superlenses, which increase the resolution of biological light microscopes by an order of magnitude.

Read More...


Story 2. Tough, Strong, and Sticky
Key words new ceramics - negative overplayed "gecko" almost made me skip this

Some of the year's coolest new materials were made possible by mimicking the nanoscale features of natural structures. For years, researchers have been trying to make materials that are as tough as nacre, the material that lines abalone shells, with limited success. This year, materials scientists created a new ceramic that's better than nacre; it could eventually be used as a structural material for buildings and vehicles. Like nacre, the new ceramic is a composite of a hard material and a gluey one. Researchers have also finally outdone the gecko, which uses arrays of nanoscale hairs on its paws to scale walls and ceilings. Arrays of carbon nanotubes with two layers--one vertically aligned, the other tangled--mimic gecko-foot structures but are 10 times as sticky.


As one thing leads to another -> Other Top Choice Topics are:
Graphene, the strongest material ever, the tip of an atomic force microscope!

Nanomedicine and Nanomaterials Safety.
Hey there!
Two studies in mice suggested that carbon nanotubes could behave like asbestos in the lungs, causing cancer.
Read More...

Tuesday, February 3, 2009

Record-Breaking Pittsburg Steelers from well-named US Coal Mining and Steel Town win US - Football’s Super Bowl_Bigger CCS Records need Breaking!

Link to full post Record Breaking Pittsburg Steelers of famous well-named US Coal Mining and Steel Town win US - Football’s Super Bowl_Bigger Record needs Breaking

Will Pittsburg be Bull's (New York) or Bears (Chicago) in CO2-CCS and not just Steal-Off into the shadows?Pittsburg Steelers of the famous well-named and one time booming US Coal Mining and Steelmakers (Carnegie) Town win Super Bowl for a record 6th time.Mind you, other more important record are at stake, global ones. Here as indicated above, I have chosen once again CO2-CCS and more precisely carbon storage and sequestration (CSS).The following key words "Pittsburg", "Super Bowl", "Chicago Bull's supported by President Obama". To crown it all the headline Steel Curtain Call shed dread to many, if not all metallurgists provided the chemical spark to write.

Full post:
Record Breaking Pittsburg Steelers of famous well-named US Coal Mining and Steel Town win US - Football’s Super Bowl_Bigger Record needs Breaking